Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 274: 116236, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503101

RESUMO

Ambient ultraviolet radiation (UVB) from solar and artificial light presents serious environmental risks to aquatic ecosystems. The Pacific oyster, Crassostrea gigas, perceives changes in the external environment primarily through its mantle tissue, which contains many nerve fibers and tentacles. Changes within the mantles can typically illustrate the injury of ambient UVB. In this study, a comprehensive analysis of phenotypic, behavioral, and physiological changes demonstrated that extreme UVB radiation (10 W/m²) directly suppressed the behavioral activities of C. gigas. Conversely, under ambient UVB radiation (5 W/m²), various physiological processes exhibited significant alterations in C. gigas, despite the behavior remaining relatively unaffected. Using mathematical model analysis, the integrated analysis of the full-length transcriptome, proteome, and metabolome showed that ambient UVB significantly affected the metabolic processes (saccharide, lipid, and protein metabolism) and cellular biology processes (autophagy, apoptosis, oxidative stress) of the C. gigas mantle. Subsequently, using Procrustes analysis and Pearson correlation analysis, the association between multi-omics data and physiological changes, as well as their biomarkers, revealed the effect of UVB on three crucial biological processes: activation of autophagy signaling (key factors: Ca2+, LC3B, BECN1, caspase-7), response to oxidative stress (reactive oxygen species, heat shock 70, cytochrome c oxidase), and recalibration of energy metabolism (saccharide, succinic acid, translation initiation factor IF-2). These findings offer a fresh perspective on the integration of multi-data from non-model animals in ambient UVB risk assessment.


Assuntos
Crassostrea , Animais , Crassostrea/metabolismo , Raios Ultravioleta/efeitos adversos , Ecossistema , Resposta ao Choque Térmico , Transcriptoma
2.
Mar Environ Res ; 195: 106367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277815

RESUMO

Microplastics (MPs) aging in natural ecosystems are caused by solar irradiation. Photo-aged MPs in aquatic systems are a major threat to molluscs. In this study, polystyrene (PS) photo-aging was simulated using a sunlight simulator. After exposure of Crassostrea gigas to photo-aged PS, a decreased gonadosomatic index, coupled with histological alterations, suggested an inhibitory effect on the gonadal development of bivalves. As the concentration of aged PS increased, the inhibitory effects on gonadal development became more severe. The sex hormone (testosterone and estradiol) and energy metabolism (glycogen, lipid, and protein content) differences between C. gigas males and females suggested a disruption of sex hormonal homeostasis and a shift in energy allocation strategy, which may have affected reproduction, especially female oysters. In addition, the substantial downregulation of SOX-8, SOX-E, Piwi1, and TGF-ß genes may be contributing factors causing the inhibitory effect of aged PS on the gonadal development of C. gigas. This study provides an essential reference for evaluating the reproductive health risks posed by aged MPs and offers novel insights and perspectives for exploring the impact of MPs under natural conditions.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Masculino , Feminino , Microplásticos , Poliestirenos , Plásticos , Ecossistema , Crassostrea/fisiologia , Luz Solar , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
3.
Sci Total Environ ; 862: 160729, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496017

RESUMO

The increasing and intensifying ultraviolet B (UVB) radiation in sunlight is an environmental threat to aquatic ecosystems, potentially affecting the entire life cycle of wild or aquacultural Pacific oyster Crassostrea gigas with photoreception. Due to its complex composition, plasma is an important biological specimen for investigating the degree of disturbance from its steady state caused by the external environment in the open-pipe-type hemolymph of mollusks. We performed a multi-omic analysis of C. gigas plasma exposed to daylight UVB radiation. Hub differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified using the functional classification of Clusters of Orthologous Groups of proteins (COGs) through the protein-protein interaction (PPI)-based maximal clique centrality (MCC) algorithm. Our results summarize three types of UVB influences (disruption of the cell membrane, promotion of nucleotide metabolism, and inhibition of energy metabolism) on C. gigas based on transcriptomic, proteomic, and metabolomic analyses. The associated hub DEGs, DEPs (e.g., nucleoside diphosphate kinase, malate dehydrogenase, and hydroxyacyl-coenzyme A dehydrogenase), and metabolites (e.g., uridine, adenine, deoxyguanosine, guanosine, and xylitol) in the plasma were identified as biomarkers of mollusk response to UVB radiation, and could be used to evaluate the influence of environmental UVB on mollusks in future studies.


Assuntos
Membrana Celular , Crassostrea , Animais , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Crassostrea/fisiologia , Ecossistema , Metabolismo Energético , Nucleotídeos/metabolismo , Proteômica/métodos
4.
Ecotoxicol Environ Saf ; 228: 113035, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863076

RESUMO

Light not only conveys image-forming vision but also has an impact on various physiological functions. In particular, ultraviolet B (UVB) radiation has the closest relationship with living organisms. For Pacific oysters (Crassostrea gigas), alteration of valve behavior is one of the most important ways responding to ambient UVB. In the present study, the response of adult C. gigas to sunlight (especially UVB) was evaluated by monitoring valve activity and further elucidated at the physiological and metabolomic levels. After exposure, the valve activity of C. gigas demonstrated flexible acclimation to the ambient conditions. The potential adjustment of osmoregulation and oxidative stress might be related to ambient UVB radiation. Mycosporine-like amino acids might contribute to the protection of C. gigas against UVB, while precursors of ß-alanine and degradation products of 5-hydroxytryptamine might adjust the contraction of the adductor muscles. The different responses of the adductor muscles (smooth and striated) were manifested in signal transduction and metabolisms of energy and nucleotide. This study not only indicated the correlation between the valve behavioral changes in oysters and light radiation, especially UVB, but illustrated the acclimation strategies of oysters to ambient light (UVB) environment.

5.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33844824

RESUMO

Cargo sorting and the subsequent membrane carrier formation require a properly organized endosomal actin network. To better understand the actin dynamics during endocytic recycling, we performed a genetic screen in C. elegans and identified RTKN-1/Rhotekin as a requisite to sustain endosome-associated actin integrity. Loss of RTKN-1 led to a prominent decrease in actin structures and basolateral recycling defects. Furthermore, we showed that the presence of RTKN-1 thwarts the actin disassembly competence of UNC-60A/cofilin. Consistently, in RTKN-1-deficient cells, UNC-60A knockdown replenished actin structures and alleviated the recycling defects. Notably, an intramolecular interaction within RTKN-1 could mediate the formation of oligomers. Overexpression of an RTKN-1 mutant form that lacks self-binding capacity failed to restore actin structures and recycling flow in rtkn-1 mutants. Finally, we demonstrated that SDPN-1/Syndapin acts to direct the recycling endosomal dwelling of RTKN-1 and promotes actin integrity there. Taken together, these findings consolidated the role of SDPN-1 in organizing the endosomal actin network architecture and introduced RTKN-1 as a novel regulatory protein involved in this process.


Assuntos
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Movimento Celular/fisiologia , Endossomos/fisiologia , Transporte Proteico/fisiologia
6.
RSC Adv ; 11(7): 4138-4146, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35424326

RESUMO

Several cyclometalated ruthenium complexes 1-5 with 2-alkenylpyridines as C,N-chelating ligands were synthesized and then characterized by NMR, MS, IR and UV-Vis spectra. According to the single crystal of complex 2, it is evident that carbon from vinyl group is successfully bonded to Ru(ii) center. Moreover, the Ru-N bond trans to the Ru-C bond is elongated (2.127(5) Å), which is consistent with the strong trans effect of the carbon atom compared to that of the nitrogen atom. With different electron-donating groups linked to vinyl, these complexes exhibited regular changes in MLCT absorption bands, which were identified by UV-Vis and CV spectra in combination with DFT and TD-DFT. Interestingly, protonated intermediate species of these complexes in acidic solutions were tracked by the absorption changes and MS spectra, which displayed a possible protonation process of these complexes with the cleavage of Ru-C σ bonds.

7.
Dalton Trans ; 49(6): 2024-2032, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31993593

RESUMO

A cyclometalated ruthenium complex [Ru(pthb)(bpy)2]+ (1, bpy = 2,2'-bipyridine, Hpthb = 3,3-dimethyl-2-(5-pyridylthiophen-2-yl)vinyl-benzo[e]indolium-1-propylsulfonate) could be converted from a C-coordinated structure to non-metallated species with N,S-bonded Hpthb upon treatment with mercury(ii) ions in water. Strikingly, the switch in the coordination mode resulted in a great absorption change along with a change in the solution color of 1 from dark red to light yellow. Therefore, 1 can be used as a colorimetric probe to detect mercury(ii) ions by the naked eye. Although the emission was not observed for 1 in water, it still demonstrated an appreciably low detection limit of 21 nM by using UV-Vis absorption spectroscopy, which was comparable with those of some probes determined by ratiometric fluorescence spectroscopy.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117541, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31748153

RESUMO

A new cyclometallated ruthenium complex (Ru1) involving a 2-(2-thienyl)pyridine and a benzo[e]indolium block connected with a hexanoic acid was successfully synthesized and characterized, which exhibited the high sensitivity and selectivity to Hg2+ over other common metal ions with the detection limit of as low as 0.053 µM in aqueous system. Then, it was grafted onto a polymer membrane to afford a Hg2+-sensitive membrane (sensor 1), which was characterized by FT-IR, SEM and XPS spectra, respectively. When sensor 1 was dipped into the aqueous solution of Hg2+ ions, the color of the membrane changed from dark-red to yellow, which could be observed by naked eyes easily. It should be noted that the membrane can absorb Hg2+ ions well in aqueous solution and the adsorption capacity of this polymer membrane for Hg2+ ions was determined by atomic absorption spectroscopy, indicating that it also could be used as a potential material for removal of Hg2+ ions.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 202: 324-332, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29800897

RESUMO

A new benzo[e]indolium derivative 1 including pyridyl and thienyl groups was synthesized and characterized, which failed to response to Hg2+ or Cu2+ in aqueous system. However, it is interesting that when it reacted with bisulfite in HEPES buffer, the in situ generated ensemble as 1-SO3H displayed dramatic absorption and fluorescence changes after adding Cu2+ or Hg2+, which were contrary to the changes of 1 upon the addition of bisulfite ions. By contrast, the other two derivatives 2 and 3 showed the almost similar trends of spectral changes, which were short of ligating atoms N or S. The further investigation of 1HNMR spectra changes of 1 showed that C-SO3H bond may be interrupted because the good binding capacity of Hg2+ and Cu2+ with O of C-SO3H weaken the binding force of C-SO3H, which resulted in the recovery of ethylene with benzo[e]indolium block. The DFT calculations results further confirmed it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...